LECTURE 24 TO 26 – ACCUMULATORS

SELF EVALUATION QUESTIONS AND ANSWERS

1. An accumulator has a ram diameter of 25 cm and lift 5 m. it is loaded with 50 Tonnes of total weight. The packing friction is 5% of the load on the ram. Find the power delivered to the main if the ram descends steadily through its full stroke in 200 seconds while the pump delivers 800 LPM though the accumulator

2 Calculate the accumulator volume of a bladder type accumulator having a gas ration of 3:1 at full charged condition. The index of polytropic expansion is 1.25. The system demand volume is 6 liter. The permissible drop is 5% (x = 0.05).

3. What size of accumulator is necessary to supply 10000 cm3 of fluid is a hydraulic system of maximum pressure of 200 bar to 100 bar minimum. Assuming N2 gas per-charged pressure of 80 bar. Find adiabatic and isothermal solution.

4. A gas charged accumulator supplies energy to a system with 10litres of oil within the pressure range of 200bar to 150 bar. The accumulator has the per-charge pressure of 90bar. What should be the size of the accumulator, if the oil is to be supplied i) in about 8 seconds and (ii) in about 8 minutes time?

5 The circuit has been designed to crush a car body into bale using a 150 mm diameter hydraulic cylinder. The hydraulic is to extend 2.50 m during a period of 10s. the time between crushing strokes is 8 min. the following accumulator gas absolute pressures are given:

 P_1 = Gas precharge pressure 90bar(abs), P_2 = Gas charge pressure when pump is turned on 200 bar(abs) = pressure relief value setting, P_3 = Minimum pressure required to actuate load 125 bar (abs).Calculate: (i) the required size of the accumulator

(ii) What are the pump hydraulic kW power and the flow requirements with and without accumulator?

Q1 Solution:

Pressure of water during descent
$$= \frac{\text{Effective load}}{\text{Area of plunger}}$$

$$P = \frac{50 \times 1000 \times 0.95 \times 9.18}{\frac{\pi}{4} \times (0.25)^2} Pa$$

$$= 9492.76 \text{ kPa}$$
Pressure head
$$= \frac{P}{\rho g}m$$

$$= 967.66 \text{ m}$$

work done by the accumulator due to pump work

= m × g × head N-m
=
$$\frac{800 \times 9.81}{60}$$
 × 967.66 Watts
= 12650 watts

work done by the accumulator during its discharge

$$= \frac{50 \times 10^{3} \times 9.81 \times 0.95 \times 5}{200} \text{ N} - \text{m/s}$$

= 11637.5 watts
= Work supplied by the accumulator

Total work added to the pipe line

+ Work supplied by the pump

= 138207.67 W

Therefore, power delivered to the pipe line = 138.208 kW

Q2 Solution:

$$\begin{pmatrix} \frac{V_{HP}}{V_{HP}+6} \end{pmatrix} = (1 - 0.05)^{1/1.25} = 0.96$$

$$\therefore \qquad V_{HP} = 0.96(V_{HP}+6) = 144 \text{ litres}$$

$$\therefore \qquad V_{Acc} = 144 + \frac{144}{3} = 192 \text{ litres}$$

Q3 Solution:

$$V_1 = Volume of accumulator cm^3$$

 V_2 = Volume of gas at high pressure, mc³

 $\label{eq:P2} \begin{array}{l} \mathsf{P}_2 = \mathsf{Maximum \ pressure, \ bar} \\ \mathsf{P} = \mathsf{Minimum \ pressure, \ bar} \\ \mathsf{P}_1 = \mathsf{Per}\text{-charged \ pressure, \ bar} \\ \mathsf{V}_1 = ? \ \mathsf{V}_2 \ ? = \mathsf{P}_1 = \mathsf{80 \ bar, \ p_2} = \mathsf{200 \ bar, \ P= 100 \ bar} \end{array}$

Let V_1 be the volume of gas occupied in the accumulator at per-charged 80 pressures. Let V_2 be the volume of gas occupied in the accumulator at 200 bar and that time 10,000 cm³ of oil has also occupied in the accumulator.

 $V_1 = V_2 + 10000 \text{ cm}^3$ $V_2 = V_1 - 10000$ $P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$ (a) Adiabatic process: $\gamma = 1.25$ $80 \times V_1^{\gamma} = 200 \times (V_1 - 10000)^{\gamma}$ $\frac{80}{200} = \left(\frac{V_1 - 10000}{V_1}\right)^{\gamma}$ $0.4 = \left(\frac{V_1 - 10000}{V_1}\right)^{1.25}$ $\frac{V_{1-10000}}{V_1} = (0.4)^{\frac{1}{1.25}}$ $\frac{V_{1-10000}}{V_1} = (0.4)^{08}$ $\frac{V_{1-10000}}{V_1} = 0.4804$ V_1 -10000 = 0.4804 V_1 V_1 -0.4804 V_1 = 10000 $0.5195 V_1 = 10000$ $V_1 = 19249.27 \text{ cm}^3$ $= 19249.27 \text{ cm}^3$ Size of accumulator

(b) Isothermal precess:

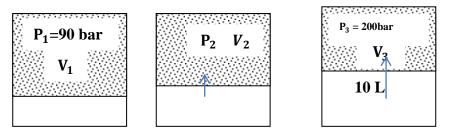
$$P_{1} V_{1} = P_{2} V_{2}$$

$$80 \times V_{1} = 200 \times (V_{1} - 10000)$$

$$\frac{80}{200} = \frac{V_{1} - 10000}{V_{1}}$$

$$0.4 = \frac{V_{1} - 10000}{V_{1}}$$

$$V_{1}-10000 = 0.4V_{1}$$


$$V_{1}-0.4V_{1} = 10000$$

$$0.6 V_{1} = 10000$$

$$V_{1} = 16666.66 \text{ cm}^{3}$$
Size of accumulator = 16666.66 cm³

Q4 Solution:

Stages of precharging, charging and delivery is shown below

Let precharging pressure be P_1 (90 bar) and V_1 . Gas is compressed by incoming oil from pressure 90 to 200 bar and when the bladder is compressed to 200 bar the volume of oil inside the accumulator is 10 Liters. Therefore we can write.

V₃-V₁=10

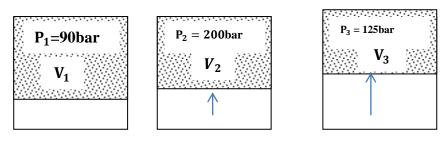
Considering adiabatic condition with γ = 1.3

(i) In about 8 seconds:

$$P_{1}V_{1}^{\gamma} = P_{2}V_{2}^{\gamma}$$

$$90(V_{1})^{\gamma} = 200 \times \left(V_{1} - \frac{10}{8}\right)^{\gamma}$$

$$90(V_{1})^{1.3} = 200 \times (V_{1} - 1.34)^{1.3}$$


$$\frac{90}{200} = \left(\frac{V_{1} - 1.25}{V_{1}}\right)^{1.3}$$

$$\left(\frac{V_{1} - 1.34}{V_{1}}\right) = \left(\frac{90}{200}\right)^{1/1.3}$$

$$V_{1} = 2.723 \text{ LPS}$$
Capacity of accumulator = 2.723 × 8 = 21.78 Liters

(ii) In about 8 minutes:

Capacity of accumulator =2.723×8×60 =1307.34 Liters

Q5Solution: Stages of precharging, charging and delivery is shown below

Let precharging pressure be P_1 (90 bar) and V_1 . Gas is compressed by incoming oil from pressure 90 to 200 bar and accumulator is discharged till pressure reaches 125bar.

Solution

Case a - Without the use of accumulator

Let compression and expansion of gas follows isothermal law

$$P_1 V_1 = P_2 V_2 = P_3 V_3$$

V_c=volume of hydraulic cylinder. It can accommodate (V₃ - V₂) amount of oil

$$V_{c} = (V_{3} - V_{2})$$

$$P_{3} V_{3} = P_{2} V_{2}$$

$$V_{3} = \frac{P_{2} V_{2}}{P_{2}} = \frac{200 \times V_{2}}{125} = 1.60 V_{2} - ... (a)$$

$$V_{c} = \frac{\pi}{4} d^{2}I = \frac{\pi}{4} (0.150)^{2} \times 2.50 = 0.0442 \text{ m}^{3} = (V_{3} - V_{2}) - ... (b)$$

Using (a) in (b) and solving we get

V₂ = 0.07362 m³
V₃ = 0.11780 m³
V₁ =
$$\frac{P_2V_2}{P_1} = \frac{200 \times 0.07362}{900} = 0.1636 \text{ m}^3 = 163.6 \text{ Litres}$$

Case b - With the use of accumulator

Pump charges accumulator in every 2.5 minutes. In other words, 2 times in 5 minutes.

Flow supplied by the pump
$$Q_p = \frac{4(V_3 - V_2)}{30}$$

$$Q_p = \frac{4(44.2)}{300} = 0.5893 \text{ LPS}$$

Neglecting all losses, Power supplied to pump

 \mathbf{P}_{pump}

=
$$P_2 \times Q_{pump}$$

= $\frac{(200 \times 10^5)(0.5893 \times 10^{-3})}{1000} = 11.79 \text{ kW}$

Without accumulator: Pump extends cylinder in 10 sec.

Flow supplied by the pump
$$Q_p = \frac{44.2}{10} = 4.42 \text{ LPS}$$

Neglecting all losses, Power supplied to pump

$$P_{pump}$$
 = $P_2 \times Q_{pump} = \frac{(125 \times 10^5)(441 \times 10^{-5})}{1000} = 55.25 \text{ kW}$

It can be see that Flow and power requirement by pump is more without accumulator.